由于雷达有效探测距离和RCS的四次方根呈正比关系。所以要想使探测距离缩短一半,那么目标的雷达截面积(RCS)就要缩小为原来的1/16。换句话说,除非使用隐形手段,否则单纯的依靠减小飞机的尺寸并不能有效减小雷达反射面积。 所以要想有效减小雷达反射面积,采取隐形手段才是王道。前面说过,由于目标的散射在高频区,他的总散射场可以分解为某些局部散射场的合成。那么那些局部的点,线,面的散射源就成了要研究的重点。对于散射回波,主要分有镜面散射波,绕射波和行波,爬行波这几个种类。 对于镜面散射,当电磁波打到光滑的表面时候,能发生镜面散射,就像初中学的光的反射现象一样,由于镜面散射能把大部分电磁波的能量完整的散射回去,所以是一种很强的散射源。另一种强散射源就是边缘绕射。当电磁波打到棱线的边缘时,镜面反射已不存在,这时候,电磁波会沿着边缘产生无数条绕线。边缘绕射是最常见的散射现象,也是一种较强的散射源。当飞机在雷达区消除了镜面散射后,边缘绕射就成了主要的散射源。
边缘绕射是最常见也是最重要的散射源,当飞机镜面散射消除后,边缘绕射就成了主要的散射源。比如机翼和一些部件的连接处,都容易造成边缘绕射。
除此以往还有几种弱散射源,比如尖顶散射。当电磁波打到尖顶,比如飞机机头时候,会在机头出发生绕射,但这是种弱散射源
尖顶散射是种弱散射源 还有一种就是行波,当电磁波打到物体表面时,电磁波会沿着物体表面进行爬行。这种爬行波在爬行过程中遇到表面不连续处,不同物质的交界处,缺口出等任何有剧烈变化的地方都会向外散射出电磁波,当它爬到物体末端无处可走时,就会产生绕射波。并同时沿着原路返回,在返回途中,遇到任何不连续处会发出第二次散射。
可以看到,在表面任何有剧烈变化的地方,都会产生散射。 |